Discretization of the Wave Equation Using Continuous Elements in Time and a Hybridizable Discontinuous Galerkin Method in Space
نویسندگان
چکیده
We provide an error analysis of two methods for time stepping the wave equation. These are based on the Hybridizable Discontinuous Galerkin (HDG) method to discretize in space, and the continuous Galerkin method to discretize in time. Two variants of HDG are proposed: a dissipative method based on the standard numerical flux used for elliptic problems, and a non-dissipative method based on a new choice of the flux involving time derivatives. The analysis of the fully discrete problem is based on simplified arguments using projections rather than explicit interpolants used in previous work. Some numerical results are shown that illuminate the theory.
منابع مشابه
Pollution-free and fast hybridizable discontinuous Galerkin solvers for the high-frequency Helmholtz equation
In this work we propose a hybridizable discontinuous Galerkin (hdG) discretization of the high-frequency Helmholtz equation in the presence of point sources and highly heterogeneous and discontinuous wave speed models. We show that it delivers solutions that are provably second-order accurate and do not suffer from the pollution error, as long as a slightly higher order hdG method is used where...
متن کاملA Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media
In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...
متن کاملHybridizable Discontinuous Galerkin p-adaptivity for wave propagation problems
A p-adaptive Hybridizable Discontinuous Galerkin method for the solution of wave problems is presented in a challenging engineering problem. Moreover, its performance is compared with a high-order continuous Galerkin. The hybridization technique allows to reduce the coupled degrees of freedom to only those on the mesh element boundaries, while the particular choice of the numerical fluxes opens...
متن کاملHigh Order Accurate Runge Kutta Nodal Discontinuous Galerkin Method for Numerical Solution of Linear Convection Equation
This paper deals with a high-order accurate Runge Kutta Discontinuous Galerkin (RKDG) method for the numerical solution of the wave equation, which is one of the simple case of a linear hyperbolic partial differential equation. Nodal DG method is used for a finite element space discretization in ‘x’ by discontinuous approximations. This method combines mainly two key ideas which are based on th...
متن کاملMultisymplecticity of hybridizable discontinuous Galerkin methods
In this paper, we prove necessary and sufficient conditions for a hybridizable discontinuous Galerkin (HDG) method to satisfy a multisymplectic conservation law, when applied to a canonical Hamiltonian system of partial differential equations. We show that these conditions are satisfied by the “hybridized” versions of several of the most commonly-used finite element methods, including mixed, no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Sci. Comput.
دوره 58 شماره
صفحات -
تاریخ انتشار 2014